Chlorambucil cytotoxicity in malignant B lymphocytes is synergistically increased by 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026)-mediated inhibition of DNA double-strand break repair via inhibition of DNA-dependent protein kinase.

نویسندگان

  • Lilian Amrein
  • Martin Loignon
  • Anne-Christine Goulet
  • Michael Dunn
  • Bertrand Jean-Claude
  • Raquel Aloyz
  • Lawrence Panasci
چکیده

Chlorambucil (CLB) treatment is used in chronic lymphocytic leukemia (CLL) but resistance to CLB develops in association with accelerated repair of CLB-induced DNA damage. Phosphorylated histone H2AX (gammaH2AX) is located at DNA double-strand break (DSB) sites; furthermore, it recruits and retains damage-responsive proteins. This damage can be repaired by nonhomologous DNA end-joining (NHEJ) and/or homologous recombinational repair (HR) pathways. A key component of NHEJ is the DNA-dependent protein kinase (DNA-PK) complex. Increased DNA-PK activity is associated with resistance to CLB in CLL. We used the specific DNA-PK inhibitor 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026) to sensitize CLL cells to chlorambucil. Our results indicate that in a CLL cell line (I83) and in primary CLL-lymphocytes, chlorambucil plus NU7026 has synergistic cytotoxic activity at nontoxic doses of NU7026. CLB treatment results in G(2)/M phase arrest, and NU7026 increases this CLB-induced G(2)/M arrest. Moreover, a kinetic time course demonstrates that CLB-induced DNA-PK activity was inhibited by NU7026, providing direct evidence of the ability of NU7026 to inhibit DNA-PK function. DSBs, visualized as gammaH2AX, were enhanced 24 to 48 h after CLB and further increased by CLB plus NU7026, suggesting that the synergy of the combination is mediated by NU7026 inhibition of DNA-PK with subsequent inhibition of DSB repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia.

We report for the first time the use of a selective small-molecule inhibitor of DNA repair to potentiate topoisomerase II (topo II) poisons, identifying DNA-dependent protein kinase (DNA-PK) as a potential target for leukemia therapy. Topo II poisons form cleavable complexes that are processed to DNA double-strand breaks (DSBs). DNA-PK mediates nonhomologous end joining (NHEJ). Inhibition of th...

متن کامل

Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway.

Nonhomologous end-joining (NHEJ) DNA factors maintain genomic stability through their DNA double-strand break (DSB) repair and telomere-associated activities. Unrepaired or misrepaired DSBs can lead to apoptotic death or chromosomal damage. The B cells of some B-chronic lymphocytic leukemia (B-CLL) patients are resistant to radiation-induced apoptosis in vitro. We show here that the novel DNA-d...

متن کامل

Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1.

The DNA repair enzymes, DNA-dependent protein kinase (DNA-PK) and poly(ADP-ribose) polymerase-1 (PARP-1), are key determinants of radio- and chemo-resistance. We have developed and evaluated novel specific inhibitors of DNA-PK (NU7026) and PARP-1 (AG14361) for use in anticancer therapy. PARP-1- and DNA-PK-deficient cell lines were 4-fold more sensitive to ionizing radiation (IR) alone, and show...

متن کامل

DNA-dependent protein kinase inhibitors as drug candidates for the treatment of cancer.

Cancer presents a difficult challenge for oncologists, as there are few therapies that specifically target disease cells. Existing treatment strategies rely heavily on physical and chemical agents that nonspecifically affect DNA metabolism. To improve the effectiveness of these treatments, we have identified a new class of protein kinase inhibitor that targets a major DNA repair pathway. A repr...

متن کامل

Wortmannin is a potent inhibitor of DNA double strand break but not single strand break repair in Chinese hamster ovary cells.

Wortmannin, an inhibitor of p110 PI 3-kinase, also inhibits DNA-dependent protein kinase, which is known to mediate DNA double strand break repair. It was recently demonstrated that wortmannin sensitized cells to ionizing radiation (IR) (Price and Youmell, Cancer Res., 56, 246-250, 1996). Wortmannin was used to determine if the potentiation of IR-induced cytotoxicity in Chinese hamster ovary ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 321 3  شماره 

صفحات  -

تاریخ انتشار 2007